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Swnmary—This paper derives formulas for the transmission
properties-characteristic impedance and attenuation—in the prin-

cipal mode of a transmission line consisting of one or two long strips
of metal foil embedded in a dielectric material between two long
metal strips considerably wider than the central ones. The width and
spacing of the central strips is arbitrary, and it is also necessary to
take account of their thickness in computing the attenuation. A
graphical method is given for evaluating the characteristic impedance
in general, and analytic approximations are given for a number of

special cases. Finally the question of the leakage of power from be-
tween the outer strips is considered briefly.

INTRODUCTION

A

TTENTIOiN has been drawn recently to the possi-

bility of constructing a transmission line in the

form of a sandwich, consisting of one or two

central conductors of metal foil between slabs of dielec-

tric, the whole inclosed by two broad plates, as shown

in cross section in Fig. 1. Where there are two strips

the voltage is applied between them and the top and

bottom plates are grounded, whereas when there is one,

the strip will be one side of the line and the two plates

will be the other. We shall assume that the strips are

very thin.
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Fig. l—Cross sections of two transmission lines.

A compact formalism for performing the required

analysis in the complex plane has recently been given

by Assadourian and Rimai, 1 to which the reader is re-

ferred for further details. We shall determine 20, the

characteristic impedance, in terms of C, the capacitance

per unit length of the line, by the relation, valid in the

TEM mode,

z, = d(/.K)/c. (I)

(We use rationalized MKS units throughout.) The

* Supported by the Sprague Electric Co., North Adams, Mass.
j’ Williams C@lege, Williamstown, Mass.
1 F.. Assadourlan and E. Rlmal, “Simplified theory of microstrip

transmission systems, ” PROC. IRE, vol. 40, pp. 165 1–1657; Decem-
ber, 1952.
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in the conductors is determined

power dissipated in them per unit length:

a = PC/2P,

where

by P,, the

(2)

P+: J] IE ‘ds, q = w’(mjW’ac) (3)

and the integration is over the boundaries of all the con-

ductors; f is the frequency, and ~c is the conductivity.

P represents the power flowing in the line. and is equal .

to

P = v’/(2zJ, (4)

where V is the maximum instantaneous voltage across

the line. We shall not consider loss in the dielectric,

though it is easy to do so. L

In order to perform the calculations we shall carry

out a conformal mapping of the z-plane, with co-

ordinates x and y (z =x+jy), which is the plane of Fig. 1,

onto the w-plane, with w = u +jv =~(z). (The first step in

this mapping is shown in Fig. 2, opposite.) In the w-plane,

the lines of constant u are lines of force and those of con-

stant v are equipotentials. It is clear that Aq, the charge

per unit length contained between two points on a con-

ductor, is given in terms of the corresponding difference

in v by

Aq = eAv. (5)

To compute the attenuation we need the field strength

E, which in the z-plane is

———
E = – dw/dz, (6)

where the bar denotes the complex conjugate. Then the

integral in (3) becomes

(7)

where ] d.. ] = <(d.Y2+dy2) is an element of the boundary

curve C of the conductor, and this can be written as

(8)

where ] dw ] = ti(dua+dvz) is an element of the image

curve C!.

THE CONFORMAL TRANSFORMATION

We shall first consider the two-strip arrangement of

Fig. 1(a); that of Fig. 1 (b) follows easily by letting d

become infinite. A transformation corresponding to

such an arrangement without the bounding planes was
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Fig. 2—’The Conformal Transformation. In the w-plane, numbers to
the left of points give the values of u+jzI, numbers to the right
give the corresponding values of sn w. Points labeled by Greek
letters on the two diagrams correspond.

given long ago:z

z=asnw (9)

where sn w is the Jacobian elliptic function.3 The re-

aping is shown in Fig. 2. The equipotentials and lines of

force form a rectangular grid in the w-plane where the

two sides of the right-hand strip in the z-plane are

mapped into the single line in the w-plane running from

(~, –~.K’) to (~, +~~’), and similarly for the other

strip. Two lines of force, A and B, have been drawn on

the left and their images given on the right. K and K’

are the complete elliptic integrals of the first kind,

formed with the complementary modrdi k and k’ re-

spectively, where

~z + /2/2 = 1, (lo)

and k is determined (cf. Fig. 2) by the width of the

strip. The total charge per unit length on one strip is e

times the difference between the values of v at the be-

ginning and end of the image of the strip—clearly it is

2e K’. The potential difference is the difference in the

values of u belonging to the two strips, or 2K. Thus,

‘ J. J. Thomson, “Recent Researches in Electricity and Mag-
netism, ” The Clarendon Press, Oxford, Eng., p. 237; 1892.

s A convenient r6sum6 of these functions will be found in R. S.
Burington and C. C, Torrance, “Higher Mathematics, ” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1930.
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Fig. 3—The second mapping. Points labeled by
Greek letters correspond.

the capacitance per unit length is

and the characteristic impedance, by (1), is

(11)

(12)

But this is not the transmission line we want. We still

have to introduce the top and bottom plates, andl this

can be done either by carrying out a new mappiug or

by using Maxwell’s method of images.4 To do it the first

way, let us write instead of (9)

z’=jz=~asnw, (13)

which rotates the z-plane counterclockwise by 9(II de-

grees, but in Fig. 3(a) we draw the configuration in the

z’-plane as a single strip and an infinite grounded plane,

the second strip now being merely the image of the first.

A simple Schwarz-Christoffel transformation

z (“ = b Cosh–l # — -! )z jr (14)

now maps the upper half z’-plane into the inside of the

4 i(Treati~e on Electricity and Magnetism, ” Oxford LTniv(XsitY

Press, New York, N. Y., 3rd cd., p. 310; 1904-1946.
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polygon of Fig. 3(b). It also maps the strip as shown,

and this arrangement is clearly exactly equivalent to

that of Fig. l(a), so the problem is solved. From (14),

!)
z

sinh — = — jz’
b

or by (13)

Jr
.

sinh — = a sn w. (15)
b

Comparing Fig. 3(b) with Fig. 1(a), we have by (9)

and (15)

da d’
a=~inh~, ~=sinh—~ h = :rb (16)

b k Y 2

so that we can determine k from

sinh djb
k=

sinh d’jb ‘

with which the solution is formally completed.

THE CHARACTERISTIC IMPED~~C~

It will often be convenient in what follows

with the ---- ,,-,.m.n,-., _-J..l,,.- l,! -:.,fim h.,1
LULL1~LC1l LC1l LCL1 j L1lUUUIUC! fi , ~LVC1l U)

d+d’
sinh ~ sinh —

b b
~~2=~_k2=—

d’ “
sinhz —

b

(17)

to work

(17) as

(18)

Making

can now

use of the complementarily of K and K’, we

write (12) as

K )P K’
ZIJ= --= (k’), (19)

where the sign on the right means that we are to take

k’ as the modulus throughout. The quotient, however,

is known from the theory of &functions5 to be given by

K’
~ in q = ~f(k’) (k),

7=–3r 7r

where q is given6 by

so that, taking the logarithm of this,’

K’ ( )~ ln~–~k2–$k4–~kG–. . . . (20)
_iF=7r

5 E. T. Whittaker and G. N. Watson, “Modern Analysis, ” Cam-
bridge University Press, Cambridge, Eng., 4th ed.; 1927. The proof
of this formula, given as a problem on p. 479, follows immediately
from the definitions above it.

8 E. T. Whittaker and G. N. Watson, ibid. This follows at once
from p. 486. The function g(k) is tabulated and plotted in Jahnke-
Emde, “Tables of Functions, ” Dover Publications, New York, N. Y.,
ch. IV; 1943.

7 The series is given in the “Encyklopadie der mathematischen
Wissenschaften, ” vol. II, p. 293.

In Fig. 4 we have plotted In I/q =$(k’) from the data

in the Jahnke-Emde tables, and from (12) and (19) we

now have two formulas for 20 in ohms:

120f(k’2) 1207r2
Zo =

<; = f(k’)di ‘
(21)

where we have set /(p/c) equal to 1207r//~, K being

the dielectric constant of the central material. (The

modification of this and following formulas required

when the dielectric has a magnetic permeability differ-

ent from that of free space consists in writing ~~/Ko in-

stead of K throughout. ) In general, it is most convenient

to find k’ from the dimensions of the line and then read

20 off the plot of Fig. 4, In special cases, however, the

f(kz)

0 0.I 0.20.30.40.50.60.7 12$ 0.9 1.0
p

Fig. &—Plot off (hz) = In 1/g against kz.
Note that ~(kz) = rr’/f (k”).

expansion (20) can be used to advantage. Consider for

example what happens when the strips are very narrow,

so that w<<b.8 From (18) we have

#2 =2; coth+,

so that the first term of (20) gives [with (16)]

‘a+(%anh$)(w<< L).

As a second example, suppose that the strips are close

together (d<<b) but rather wide (d’>> b). Eq. (17) gives

d
k =— e-”/’ (d<< b<< d’) (22a)

b

so that again the logarithm suffices, and we have

As a final special case, let us consider the one-strip

line of Fig. l(b). In (17) we let d+m, so that

s There will be a number of these “double inequalities” in what
follows. Here, w<<b means that zw/b is small enough so that higher
terms in it can be neglected. Since in nearly every case ratios of this
kind appear in exponential or hyperbolic expressions, it usually
suffices for purposes of ordinary accuracy to read “a<<fJ” as “a< ~b”
or “a>>b” as “a >2b. )’
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In this line the potential difference is only half that in

the case of two strips, so that 20 is given by half its

value in (21). In the extreme cases we have as before

The sign >> in the second formula is actually unneces-

sary, for the error is already very small when w = lz.g

TI+IZ .\ TTENUJITION

In order to calculate the attenuation from (8) we need

to know dw/dz. From (15) (dropping the now unneces-

sary primes) we find, in terms of z and w,

dw a /cosh z b
—— = .—

‘z‘5d[(a’-sinh’:)(a’-sinhn:)l)l ‘24’)
1 ~(l+a’ sn2 w)

. ——______ (24b)
ab cnwdnw

The second of these is not hard to integrate. Let us begin

by calculating Jl, the contribution to the dissipation in-

tegral (~) due to the top and bottom plates. The contour

in (8) corresponding to half the top plate, is by Fig. 3,

that for which — w <z’ S – 1. On this plate u=O, so

that w =.jv, sn w =j tn (v, k), and (13) becomes3

.! =
e —atnv (k’),

so that (8) is

~.
~11–a’tn’v]

~:J,=L s ——cn2 vdv (k’).
ab ~,,–111~ dn v

This is evaluated by letting s = <(l +az) sn v to give

To find the power absorbed in the two strips we must,

for the first time in this work, introduce the thickness

of the strips, for if we take it to vanish, the field inten-

sity, and hence the dissipation, will be infinite at the

edges. To avoid further complexity we shall assume that

the strip follows the equipotential v = K – e, where

e/K<<l. From (24a) we have, evaluated along the

strip, with dw =e and dz =jdy =jh,

To find the approximate half-thickness of this surface,

we write A as a function of c and x, and then find its

maximum value. This turns out to be

A
cosh d’/b — cosh d/’b

,,,ZY = be
sinh d’/b –

so that if we take t to be the (total) thickness 0[ the

strip, the corresponding equipotential sunface has

t sinh d’/b
(27)

‘ = % cosh (i’/b – cosh d/b “

This artifice of introducing the strip by means of an

equipotential amounts to replacing square edges by

rounded ones. An actual strip of foil, however, has edges

which are neither square nor round, and the point is of

little importance.

~Tow we are to integrate (24 b). For the top side Off one

strip we integrate along the equipotential w = K+ c+jv

(O STJ ~ K-’). Making use of the approxima.tions for small

E we have, to sufficient accuracy,

a
— ~anh—l ——

<(l+a’) -14
( d’

)
d’ coth ~ – d coth : .

– b2#2
(26a)

When k’ is close to zero this form is awkward, but then

we can do (25) directly to get

2d/b
Jp:

( )
l–———— (k’ <<1) (26b)

.&& 2d/b

and similarly the limiting form when d and d’ are large is

(26c)

~ These formulas have been given by R. M. Barrett in ‘{Micro-
wave Printed Circuits—Preliminary Memo and Technical Note, ”
.\F Research Center, Cambridge, Mass.; 1951, together with the
results of extensive experiments verif}-ing them.

(sn v . cn IJ
cn(~”+c+jv)=–jk — —

) “
(k’).

dn v – ‘e dn2 ,;

(

cn v snvl
d}z(K+e+jv)=k — + jek” —

dn v )dnv, j

With this, the contribution to (8) from one strip becomes

2 s1< ~(a’+dn’ v)dn vdv
J2=—— _ ——

abk2 o ‘nvcnv[l+i;(R-k’’’:)21‘k’)
for the dissipation in one side of one strip,. The substitu-

tion s = dnZ v now reduces this to

s1 <(a’ + s)ds
J2 . ~ ___ –-(k)

‘b ‘: (1 – S)(S – k2) +5 [(1+ k’).r2 – 2k’]’
s

The result of doing this integration, dropping all tmrns

which vanish with e, is, by (27),
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“=i-HcOth:lnr:cOsh:::::6%)
+cot’ ~ In ? k ~o~h ~ sinh w/2b

( )1
(28)

b t b cosh d“/2b

where d” is d’ +d. This can be evaluated readily enough

in any particular instance. If we assume that d’/b and d/b

are large enough so that e–zdlb and e–ad[b can be neg-

lected, it simplifies considerably, and we find that

J, = $,(1 + e-2’/b)
[’n(?sinha-:l ‘2’)

and that for the two conductors

J= J,+2J2=;
[ “+e-’d’b’%sinh:)

w+-2d
—

1

e–2d/b .

2b

(30)

Here we shall give only two further limiting forms. The

first is that corresponding to (22a) where, for the whole

system, (8) is

J= J1+2J2=:
[ 1

ln~+~(w–2b) (d<< b<<d’)

so that, with (2), (3), (4) and (22 b), the attenuation is

where we have used the approximation

(k<< 1).

The other limiting case which we shall consider is that

in which d becomes infinite, corresponding to the single-

strip line:

Jz=;
(

in ~ – e-”lb) (w>> b). (31)

In these formulas, t must here be taken small enough so

that the second term in the numerator is not larger than

(or nearly equal to) the first. To find the total dissipa-

tion in this case we use (26c) and (29) to form

( )J= Jl+Jz=& ln~+~–e–”lb (W>> b). (32)

This, with (2), (3), (4), and (23b) gives for the attenua-

tion in this case.

ln~+~
~~K

a— (W>> b).
= 1207rk

(33)

ln2+~

LEAKAGE FROM THE LINE

One way to reduce the leakage of power from the edges

of the plates is to close them in. This, of course, changes

somewhat the electrical characteristics of the line, but

the chief objection to it lies in the increased complexity

of the operation of making the ‘(sandwich.’7 Although to

calculate exactly the power which leaks from the line is

beyond the scope of this paper, we can at least make a

relative estimate of it by calculating the intensity of the

electric flux at points in the central plane of the system.

One would at once think that where there are two strips

with opposite charge the lines of force would predomi-

nantly run from one to the other, so that there would

be less flux out to the sides than in the single-strip line.

We shall see that this is true, though the effect is not so

pronounced as one might have thought.

If we square (24a) and let z be a real number x, much

greater than b, we find that

4a2
E2=— e–2z/b4

k2b2
(34)

But throughout this analysis we have assumed that the

voltage applied across the line is given by K, which de-

pends on the line geometry. What is relevant here is,

say, the field produced when one volt is applied. From

(34), this is

4a2
Elz = — e–2xlb

K2k2b2 “

For the double-strip line this is, by (16)

4
El’ = — sinh’ ~ e-”fb (double strip).

Ktb2
(35)

For the single-strip line x should be measured from the

center of the strip. Therefore we replace x in (34) by

x+d+&o, and further, the potential difference between

the strip and the envelope is only half that between the

two strips. Thus

4
E12 = — e-zf’~f’) /’ (single strip).

K2b2
(36)

Supposing that, as would generally be the case, d’>>b

in (35), we find that

1
E12 = ——— e-2 f’-d’J 1’ (double strip). (37)

K2b2

These two special cases will in general have k2<<l [see

(22a) and (23a) ]. If this is true then K is close to 7r/2 in

both cases. Further, comparing (37) with (36) we see

that in each the factor in parentheses is the distance

measured from the outside of a strip, so that if the one

or two strips are to occupy a given width, the two-strip

arrangement will, for a given width of plate, have one-

fourth the leakage of the one-strip system. These equa-

tions also make it clear why the most compact and eco-

nomical construction will have the dielectric sheets made

as thin as possible.


