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Planar Transmission Lines*
DAVID PARK?

Summary—This paper derives formulas for the transmission
properties—characteristic impedance and attenuation—in the prin-
cipal mode of a transmission line consisting of one or two long strips
of metal foil embedded in a dielectric material between two long
metal strips considerably wider than the central ones. The width and
spacing of the central strips is arbitrary, and it is also necessary to
take account of their thickness in computing the attenuation. A
graphical method is given for evaluating the characteristic impedance
in general, and analytic approximations are given for a number of
special cases. Finally the question of the leakage of power from be-
tween the outer strips is considered briefly.

INTRODUCTION
ﬁTTENTION has been drawn recently to the possi-

bility of constructing a transmission line in the

form of a sandwich, consisting of one or two
central conductors of metal foil between slabs of dielec-
tric, the whole inclosed by two broad plates, as shown
in cross section in Fig. 1. Where there are two strips
the voltage is applied between them and the top and
bottom plates are grounded, whereas when there is one,
the strip will be one side of the line and the two plates
will be the other. We shall assume that the strips are
very thin.
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Fig. 1-—Cross sections of two transmission lines.

A compact formalism for performing the required
analysis in the complex plane has recently been given
by Assadourian and Rimai,! to which the reader is re-
ferred for further details. We shall determine Z,, the
characteristic impedance, in terms of C, the capacitance
per unit length of the line, by the relation, valid in the
TEM mode,

Zo = /(ue)/C. (1
(We use rationalized MKS units throughout.) The

* Supported by the Sprague Electric Co., North Adams, Mass.
t Williams College, Williamstown, Mass.
1 F. Assadourian and E. Rimai, “Simplified theory of microstrip
lt)ranslrg‘isssion systems,” Proc. IRE, vol. 40, pp. 1651-1657; Decem-
er, 2.

attenuation in the conductors is determined by P., the
power dissipated in them per unit length:

o« = P./2P, (2)
where

1 €
Pc =?7]_f lE|2dS, n= '\/(Wf/“/UJ (3)
I
and the integration is over the boundaries of all the con-
ductors; f is the frequency, and o, is the conductivity.
P represents the power flowing in the line. and is equal
to

P =1V2/(22y), (4)

where T is the maximum instantaneous voltage across
the line. We shall not consider loss in the dielectric,
though it is easy to do so.!

In order to perform the calculations we shall carry
out a conformal mapping of the z-plane, with co-
ordinates x and v (z=x-jy), which is the plane of Fig. 1,
onto the w-plane, with w=u+4jv=f(z). (The first step in
this mapping is shown in Fig. 2, opposite.) In the w-plane,
the lines of constant « are lines of force and those of con-
stant v are equipotentials. It is clear that Ag, the charge
per unit length contained between two points on a con-
ductor, is given in terms of the corresponding difference
in 2 by

Agq = €Av. (5)

To compute the attenuation we need the field strength
E, which in the z-plane is

E = — dw/dz, (6)

where the bar denotes the complex conjugate. Then the
integral in (3) becomes

J=f0

where ] dzl = 4/(dx*+dy?) is an element of the boundary
curve C of the conductor, and this can be written as
dw

dz

| ds ] %

dw
dz

J =

| dw|, (8)

o
where ]dw] =4/(du*+dv? is an element of the image
curve C’.

TaE CONFORMAL TRANSFORMATION

We shall first consider the two-strip arrangement of
Fig. 1(a); that of Fig. 1(b) follows easily by letting d
become infinite. A transformation corresponding to
such an arrangement without the bounding planes was
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Fig. 2—The Conformal Transformation. In the w-plane, numbers to
the left of points give the values of #+jv, numbers to the right
give the corresponding values of sn w. Points labeled by Greek
letters on the two diagrams correspond.

given long ago:?

g =asnw

9)

where sn w is the Jacobian elliptic function.? The ma-
ping is shown in Fig. 2. The equipotentials and lines of
force form a rectangular grid in the w-plane where the
two sides of the right-hand strip in the gz-plane are
mapped into the single line in the w-plane running from
(K, —jK’) to (K, +jK’), and similarly for the other
strip. Two lines of force, 4 and B, have been drawn on
the left and their images given on the right. K and K’
are the complete elliptic integrals of the first kind,
formed with the complementary moduli 2 and %’ re-
spectively, where

B4 k2 =1, (10)

and % is determined (cf. Fig. 2) by the width of the
strip. The total charge per unit length on one strip is €
times the difference between the values of v at the be-
ginning and end of the image of the strip—clearly it is
2¢K’. The potential difference is the difference in the
values of # belonging to the two strips, or 2K. Thus,

zJ. J. Thomson, “Recent Researches in Electricity and Mag-
netism,” The Clarendon Press, Oxford, Eng., p. 237; 1892,

3 A convenient résumé of these functions will be found in R. S,
Burington and C. C. Torrance, “Higher Mathematics,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1930.
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Fig. 3—The second mapping. Points labeled by
Greek letters correspond.
the capacitance per unit length is
K/
C=¢e— (11
and the characteristic impedance, by (1), is
2= v (&)= (12)
e e/ K’

But this is not the transmission line we want. We still
have to introduce the top and bottom plates, and this
can be done either by carrying out a new mapping or
by using Maxwell’s method of images.4 To do it the first
way, let us write instead of (9)

# = jz = jasn w,

(13)

which rotates the z-plane counterclockwise by 90 de-
grees, but in Fig. 3(a) we draw the configuration in the
z’-plane as a single strip and an infinite grounded plane,
the second strip now being merely the image of the first.
A simple Schwarz-Christoffel transformation

1
7' =5 <cosh~l 7 — 5 j1r>

now maps the upper half z’-plane into the inside of the

(14)

4 “Treatise on Electricity and Magnetism,” Oxford University
Press, New York, N. Y., 3rd ed., p. 310; 1904-1946.
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polygon of Fig. 3(b). It also maps the strip as shown,
and this arrangement is clearly exactly equivalent to
that of Fig. 1(a), so the problem is solved. From (14),

or by (13)
(15)

Comparing Fig. 3(b) with Fig. 1(a), we have by (9)
and (15)

a d 1
¢ = sinh —> — = sinh —> h=—mub (16)
b Vv 2
so that we can determine k from
sinh d/b
= —— (an
sinh d'/b

with which the solution is formally completed.

Toe CHARACTERISTIC IMPEDANCE

It will often be convenient in what follows to work
with the complementary modulus k', given by (17) as

w d+d
sinh 7 sinh

Br=1— R =

(18)

'
sinh? —
b

Making use of the complementarity of K and K’, we
can now write (12) as

ey Y

where the sign on the right means that we are to take
k’ as the modulus throughout. The quotient, however,
is known from the theory of ¢-functions® to be given by

Kl

K

(%), (19)

1 1
= — —;ln q = ";f(kz) (%),

where ¢ is given® by
1
" — bt ___ bt
9= -F k 4—2w ke + -
so that, taking the logarithm of this,”
K’ 1(16 1 13

23
k4 - kﬁ .
192

K T

In— — — k? — =
B2 64

-)4w

5 E. T. Whittaker and G. N. Watson, “Modern Analysis,” Cam-
bridge University Press, Cambridge, Eng 4th ed.; 1927. The proof
of this formula, given as a problem on p. 479, follows immediately
from the definitions above it.

6 E. T. Whittaker and G. N. Watson, ¢bid. This follows at once
from p. 486. The function ¢(k) is tabulated and plotted in Jahnke-
Emde, “Tables of Functions,” Dover Publications, New York, N. Y.,
ch. I'V; 1943.

7 The series is given in the “Encyklopidie der mathematischen
Wissenschaften,” vol. II, p. 293
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In Fig. 4 we have plotted In 1/¢=f(k?) from the data
in the Jahnke-Emde tables, and from (12) and (19) we
now have two formulas for Z, in ohms:

70— 120f(K) _ 120" o
Vk (k)V

where we have set +/(u/€) equal to 1207/+/k, & being
the dielectric constant of the central material. (The
modification of this and f{ollowing formulas required
when the dielectric has a magnetic permeability differ-
ent from that of free space consists in writing uk/u, in-
stead of x throughout.) In general, it is most convenient
to find &’ from the dimensions of the line and then read
Z, off the plot of Fig. 4. In special cases, however, the
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Fig. 4—Plot of f(k?)=1n 1/q against k2.
Note that f(k?) ==2/f(k"2).

expansion (20) can be used to advantage. Consider for
example what happens when the strips are very narrow,
so that w<«b.? From (18) we have

w d
k'? = 2 — coth —,
b b

so that the first term of (20) gives [with (16)]
120 16} 7d
Zy = ——=1In|— tanh ~—>
\/ K TW 2h

As a second example, suppose that the strips are close
together (d<b) but rather wide (d’>>b). Eq. (17) gives

(w << k).

d
k= —b~ eVt (dKbKd) (22a)
so that again the logarithm suffices, and we have
6072/+/k
g R @KLK Kd). (22b)
wd’ +1
wd

As a final special case, let us consider the one-strip
line of Fig. 1(b). In (17) we let d— =, so that

k= egvib, (23a)

8 There will be a number of these “double inequalities” in what
follows. Here, w<b means that w/b is small enough so that higher
terms in it can be neglected. Since in nearly every case ratios of this
kind appear in exponential or hyperbolic express1ons it usually
suffices for purposes of ordinary accuracy to read “a<b” as “a <3b”
or “a>>b” as “a>2b."
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In this line the potential difference is only half that in
the case of two strips, so that Z, is given by half its
value in (21). In the extreme cases we have as before

60 167 157%/v/x
Zy =~ —= ln———(w Kh), Zym ———(w>h). (23b)
Ve Tw In2 4 TW
n g
47

The sign >> in the second formula is actually unneces-
sary, for the error is already very small when w=4.?
THE ATTENUATION

In order to calculate the attenuation from (8) we need
to know dw/dz. From (15) (dropping the now unneces-
sary primes) we find, in terms of g and w,

cosh 5/b

i b s 5 (24a)
’: a®—sinh? 7) a?— k?sinh? —b—>]

1 +v/(14a? sn? w)

ab cn wdn w

dw a

(24b)

The second of these is not hard to integrate. Let us begin
by calculating Ji, the contribution to the dissipation in-
tegral (8) due to the top and bottom plates. The contour
in (8) corresponding to half the top plate, is by Fig. 3,
that for which — e« <z2’< —1. On this plate #=0, so
that w=jz, sn w=j tn (v, k), and (13) becomes®

= —atny (%),
so that (8) is
L 1 K \/ 1—a’tn’o
—J, = — l ~L cn? ody (F).
1 (lb tn”ll/a dn v

This is evaluated by letting s =+/(1-+¢a? sn v to give
v (1+a?) \/(S,_ 1)

k"2
Ji= ——— (k”2=~w-> (25)
ab\/(1+a2) — k37 1+a?
-h/(l—‘—a“ k*+a? a
= [V( ) tanh™! ————
YL 14+a? V(E+a?)
— tanh™! —

)
V(1+a?)

d’ d
d’ coth — — d coth —)
b b

When £’ is close to zero this form is awkward, but then
we can do (23) directly to get

2 2d/b
Ji~—(1—— ) (F < 1)
b sinh 24/3

and similarly the limiting form when d and d’ are large is

= 26a,
b2k/2 ( )

(26b)

4w
]1z

o @0, (26¢)

9 These formulas have been given by R. M. Barrett in “Mlcro-
wave Printed Circuits—Preliminary Memo and Technical Note,”
AF Research Center, Cambridge, Mass.; 1951, together with the
results of extensive experiments verifying ‘then.
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To find the power absorbed in the two strips we must,
for the first time in this work, introduce the thickness
of the strips, for if we take it to vanish, the field inten-
sity, and hence the dissipation, will be infinite at the
edges. To avoid further complexity we shall assume that
the strip follows the equipotential v =K —e¢, where
¢/K<1. From (24a) we have, evaluated along the
strip, with dw=¢ and dz =jdy =\,

dw e a cosh x/b

J =
dZ )\ X z -
VT - )er )]
b 5).

To find the approximate half-thickness of this surface,
we write A as a function of € and %, and then find its
maximum value. This turns out to be

cosh d'/b — cosh d/b
sinh d'/b

)\m ax = 0O€

so that if we take ¢ to be the (total) thickness ol the
strip, the corresponding equipotential surface has

¢ sinh d'/b
" 2b cosh d'/b — cosh d/b

@7

This artifice of introducing the strip by means of an
equipotential amounts to replacing square edges by
rounded ones. An actual strip of foil, however, has edges
which are neither square nor round, and the point is of
little importance.

Now we are to integrate (24b). For the top side of one
strip we integrate along the equipotential w= K-+ -jv
(0<v=<K'). Making use of the approximations for small
e we have, to sufficient accuracy,

1 . snvcnvy ]
sn (K + e+ jv) = ———jk' -
dn dn? 9 |
) __(sny o cnvw ,
cn (K + e+ jv) =~ — jk — Je B (&).
dn v dn?y

2

cn v . sn o
dn (K 4 ¢ + jv) k< + jek' )
dn v dno/ )

With this, the contribution to (8) from one strip becomes

ng

2 f’f +/(a?+dn? v)dn vdy )

abk? €? cnv sn o\ 2
snvcnvI:1+ ( — B )
dn?2 \snv cny

for the dissipation in one side of one strip. The substitu-
tion s=dn?* ¢ now reduces this to

—(%)

1t Vi{a® + s)ds
J2=_f R
ab 2

P — B+ (1 )5 — 28
S

The result of doing this integration, dropping all terms
which vanish with ¢, is, by (27),
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J2=

2 a 4b d sinh w/2b
[coth — In { — cosh — ———~>
bE”? b ¢ b cosh d”/2b

d 45 d’ sinh w/2b
+ coth— In | — % cosh — ~———> (28)
b ! b coshd”’/2b

where d’’ is d’+d. This can be evaluated readily enough
in any particular instance. If we assume thatd’/band d/b
are large enough so that ¢=%¥® and ¥ can be neg-
lected, it simplifies considerably, and we find that

4 o 4 @ w w 5
bk'2(1+e )[ln TSth—b)_%} (29)

]2 =
and that for the two conductors
8 oty 46 | w
J=J1+2]2zm[(1—l—e ) In —t—smhﬁ

_wt 2d E_ZdIb:I.
2b

(30)

Here we shall give only two further limiting forms. The
first is that corresponding to (22a) where, for the whole
system, (8) is

4 4b d

so that, with (2), (3), (4) and (22b), the attenuation is

8h 7 4
n—-4——\w— — 7
7V K i 452 T
w2 KK d)
120x2d 8h wd
In —
xd 2k

(K1),

The other limiting case which we shall consider is that
in which d becomes infinite, corresponding to the single-
strip line:

4 2b
Ty = In——
bk"? !

In these formulag, # must here be taken small enough so
that the second term in the numerator is not larger than
(or nearly equal to) the first. To find the total dissipa-
tion in this case we use (26¢) and (29) to form

“w“’) (w>b). 31)

4 2b w
J=J1+J,= <1n—+—b——e“w“’> (w>0). (32)

bk'? ¢

This, with (2), (3), (4), and (23b) gives for the attenua-
tion in this case.

1 4k n TW
MWk B w2k
o = (w > b). (33)
1207/ 1 TW
n —
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LEAKAGE FROM THE LINE

One way to reduce the leakage of power from the edges
of the plates is to close them in. This, of course, changes
somewhat the electrical characteristics of the line, but
the chief objection to it lies in the increased complexity
of the operation of making the “sandwich.” Although to
calculate exactly the power which leaks from the line is
beyond the scope of this paper, we can at least make a
relative estimate of it by calculating the intensity of the
electric flux at points in the central plane of the system.
One would at once think that where there are two strips
with opposite charge the lines of force would predomi-
nantly run from one to the other, so that there would
be less flux out to the sides than in the single-strip line.
We shall see that this is true, though the effect is not so
pronounced as one might have thought.

If we square (24a) and let z be a real number x, much
greater than b, we find that

4a?
k2b?

2 e-—2z/b.

(34

But throughout this analysis we have assumed that the
voltage applied across the line is given by K, which de-
pends on the line geometry. What is relevant here is,
say, the field produced when one volt is applied. From
(34), this is

4q?
Kk

e——2x/b'

E,?

For the double-strip line this is, by (16)

’
sinh? ?)— g—2e/b

2= (double strip). (35)

K2p?

For the single-strip line x should be measured from the
center of the strip. Therefore we replace x in (34) by
x+d-+3w, and further, the potential difference between
the strip and the envelope is only half that between the
two strips. Thus

e—2(£—w/2)/b

E? = (single strip). (36)

K2b?
Supposing that, as would generally be the case, d’>>b
in (35), we find that
e—2(x—d) b

Ef ~ (37)

T (double strip).
These two special cases will in general have k21 [see
(22a) and (23a) ]. If this is true then K is close to /2 in
both cases. Further, comparing (37) with (36) we see
that in each the factor in parentheses is the distance
measured from the outside of a strip, so that if the one
or two strips are to occupy a given width, the two-strip
arrangement will, for a given width of plate, have one-
fourth the leakage of the one-strip system. These equa-
tions also make it clear why the most compact and eco-
nomical construction will have the dielectric sheets made
as thin as possible.



